Abstract 128: A Translational Strategy Targeting Type I BMP Receptors to Prevent Heterotopic Ossification

نویسندگان

  • Shailesh Agarwal
  • Shawn Loder
  • David Cholok
  • Christopher Breuler
  • Michael Chung
  • Cameron Brownley
  • Jonathon Peterson
  • John Li
  • Hsiao Hsieh Hsung
  • Kavitha Ranganathan
  • Caitlin Priest
  • Shuli Li
  • Yuji Mishina
  • Benjamin Levi
چکیده

PURPOSE: Trauma-induced heterotopic ossification (tHO) is the aberrant growth of ectopic bone in soft tissue, which develops in patients following severe musculoskeletal trauma. Much of HO literature focuses on a related pathology known as fibrodysplasia ossificans progressiva (FOP), which is caused by a hyperactivating mutation in the type I bone morphogenetic protein receptor (T1-BMPR) ACVR1 (ACVR1 R206H). Consequently, emphasis has been placed on developing inhibitors with improved specificity for ACVR1. However, patients who develop tHO do not harbor known ACVR1 mutations, and it is unclear whether emphasis on ACVR1-specific inhibition is beneficial for the treatment of tHO. Here investigate whether any single T1-BMPR is required for tHO, or whether these receptors perform overlapping roles during tHO development. We further evaluate the efficacy of the BMP ligand trap, Alk3Fc, as a broad-spectrum inhibitor of T1-BMP receptors in the treatment and prevention tHO.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural basis for the potent and selective binding of LDN-212854 to the BMP receptor kinase ALK2

Individuals with the rare developmental disorder fibrodysplasia ossificans progressiva (FOP) experience disabling heterotopic ossification caused by a gain of function mutation in the intracellular region of the BMP type I receptor kinase ALK2, encoded by the gene ACVR1. Small molecule BMP type I receptor inhibitors that block this ossification in FOP mouse models have been derived from the pyr...

متن کامل

Abstract 129: Fabrication of the First Full-Scale Human Auricular Chondrocyte Derived Ear Scaffold for Clinical Application

PURPOSE: Trauma-induced heterotopic ossification (tHO) is the aberrant growth of ectopic bone in soft tissue, which develops in patients following severe musculoskeletal trauma. Much of HO literature focuses on a related pathology known as fibrodysplasia ossificans progressiva (FOP), which is caused by a hyperactivating mutation in the type I bone morphogenetic protein receptor (T1-BMPR) ACVR1 ...

متن کامل

Antisense-Oligonucleotide Mediated Exon Skipping in Activin-Receptor-Like Kinase 2: Inhibiting the Receptor That Is Overactive in Fibrodysplasia Ossificans Progressiva

Fibrodysplasia ossificans progressiva (FOP) is a rare heritable disease characterized by progressive heterotopic ossification of connective tissues, for which there is presently no definite treatment. A recurrent activating mutation (c.617G→A; R206H) of activin receptor-like kinase 2 (ACVR1/ALK2), a BMP type I receptor, has been shown as the main cause of FOP. This mutation constitutively activ...

متن کامل

Molecular and cellular mechanisms of heterotopic ossification.

Heterotopic ossification (HO) is a debilitating condition in which cartilage and bone forms in soft tissues such as muscle, tendon, and ligament causing immobility. This process is induced by inflammation associated with traumatic injury. In an extremely rare genetic disorder called fibrodysplasia ossificans progessiva (FOP), a combination of inflammation associated with minor soft tissue injur...

متن کامل

The unique activity of bone morphogenetic proteins in bone: a critical role of the Smad signaling pathway.

Bone morphogenetic proteins (BMPs) are multifunctional cytokines that belong to the transforming growth factor-β family. BMPs were originally identified based on their unique activity, inducing heterotopic bone formation in skeletal muscle. This unique BMP activity is transduced by specific type I and type II transmembrane kinase receptors. Among the downstream pathways activated by these recep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2017